Отдых между подходами
Подобно продолжительности повторений, тренеры могут регулировать продолжительность восстановления между подходами для изменения баланса взаимосвязи «объём-нагрузка в тренировке». При коротких восстановительных периодах (<30 секунд) тренировочный объём можно повысить, так как увеличивается плотность занятия. Тем не менее, если восстановления недостаточно для полного восполнения анаэробных источников энергии (34), нагрузку следует уменьшить. При долгих восстановительных периодах можно использовать большие нагрузки в каждом подходе, пожертвовав плотностью занятия из-за дополнительного времени отдыха (24).
Согласно исследованиям, изучающим периоды отдыха между подходами, короткий отдых (≤60 секунд) потенциально снижает объём нагрузки, в связи с резким снижением используемого отягощения, по сравнению с более продолжительным восстановлением (три минуты) (74). Это подтверждается Buresh et al (17), показавшими больший прирост поперечника четырёхглавой мышцы при использовании долгого (2,5 минуты), а не короткого (60 секунд) восстановления между подходами
Однако при интерпретации этих данных нужна осторожность, так в каждом из упомянутых исследований уравнивали объём. Подобный контроль может устранить преимущества короткого отдыха, потому что плотность тренировки не повышается
До сих пор не изучено допустимое увеличение объёма тренировки при коротких интервалах отдыха. Поэтому нужны дополнительные исследования для более точных рекомендаций относительно регулирования периодов отдыха между подходами для увеличения гипертрофии мышц (35).
Интерпретация
Кроме того, данное исследование можно использовать в качестве инструмента, иллюстрирующего эффект повторной нагрузки. Эффект повторной нагрузки – явление, показывающее защиту мышц от повреждений при нагрузках в будущем, при повторном выполнении аналогичных задач (6). Согласно обсуждаемому исследованию, прямые и косвенные показатели мышечных повреждений уменьшались на третьей и десятой неделе тренировок. Примечательны значительные разногласия относительно роли повреждений мышц в гипертрофии, при которых одни учёные утверждают, что это механизм, влияющий на мышечный рост (7), тогда как другие считают его возникающим при работе мышц, но не относящимся к причинным факторам (8). Поэтому вполне понятна путаница «хорошо или плохо» в отношении эффекта повторной нагрузки. В самом деле, если повреждения мышц – критический компонент мышечной гипертрофии, тогда нужно приложить усилия для продолжения мышечных повреждений и предотвращения эффекта повторной нагрузки (например, изменять упражнения, преднамеренно детренироваться и т. д.). Однако, в случае, если повреждения мышц не являются критическим компонентом гипертрофии, необходимо стараться вызвать эффект повторной нагрузки. Как показано в этом исследовании, при повреждении мышц сила резко уменьшается, что снижает вашу возможность постепенной перегрузки.
Для спортсмена силовых видов спорта большая часть улучшения результатов обеспечивается регулированием утомления от тренировок. Таким образом, усилия нужно сосредоточить на приспособлении вашего организма к нагрузкам, которых вы стремитесь достигнуть в тренировках. Вводные мезоциклы с преднамеренно низкой нагрузкой в подходе (ИВН) и объёмом – отличный способ начала цикла тренировок. Кроме того, постепенное увеличение объёма, по мере роста опыта занятий также помогает приспособиться к повышенным нагрузкам на макроуровне.
Адаптация к физическим упражнениям: принцип сверхнагрузки
Принцип
сверхнагрузки ответственен за прогресс в освоении физических упражнений, равно
как и за адаптацию к ним. Мышечная система может быть перегружена механически
или метаболически. Эти механизмы приводят к специфическим и различным
адаптациям, которые повышают производительность.
Масштаб
этих адаптаций зависит от:
- Типа упражнений.
- Интенсивности упражнений.
- Частоты упражнений.
- Длительности упражнений.
Появляются
всё новые свидетельства того, что и другие факторы могут влиять на масштаб
адаптаций. Сюда относятся:
- Изначальный уровень тренированности организма.
- Генетические факторы, определяющие реакцию организма (присутствие/отсутствие
ответа на подобную терапию) на проводимые мероприятия.
Характер упражнений
(например, силовая тренировка или тренировка на выносливость) влияет на тип и
масштаб адаптаций в нейромышечной системе. К примеру, если проводится
тренировка на выносливость (большое число повторений, малая нагрузка), мышечная
система подвергнется изменениям, направленным на интенсификацию аэробного
метаболизма и сопротивляемость усталости. Напротив, силовые тренировки (малое
число повторений, большая нагрузка) будут способствовать адаптации мышц, таким
как повышенный синтез миофибриллярных белков. В результате будет наблюдаться
рост мышц и, как следствие, мышечная сила и мощность.
Другой принцип, который необходимо учитывать, — это специфичность
В контексте тренировки важно принимать тип выполняемого упражнения. Принцип специфичности гласит, что только подвергнутая повторным нагрузкам система или часть тела будет адаптироваться к хроническим перегрузкам
Таким образом, конкретное упражнение вызывает специфические приспособления, создающие специфические тренировочные эффекты.
Тип сокращений
Эксцентрические сокращения мышц повышают механическую нагрузку на мышечно-сухожильные единицы (7). При эксцентрических сокращениях ниже амплитуда ЭМГ, преимущественно рекрутируются быстросокращающиеся волокна, что приводит к большему напряжению отдельных волокон и предрасполагает волокна типа II к повреждению (78). Большие повреждения мышц способствуют адаптивной реакции быстросокращающихся волокон, обладающих большим потенциалом роста (1).
Традиционные методы определения нагрузки в тренировочных программах обычно используют силу концентрического сокращения спортсмена (процент 1 ПМ). Тем не менее, в связи с превышением силы эксцентрического сокращения концентрического усилия на 45% (41), вполне вероятно, что весь потенциал эксцентрической тренировки используется редко. Поскольку субмаксимальная эксцентрическая тренировка не повышает срочно синтез мышечных белков больше концентрической тренировки, влияние на сигнальные пути мышечной гипертрофии вероятно ограничивается традиционным количественным подходом в применяемой нагрузке (21). Однако, при выполнении эксцентрической тренировки с максимальной нагрузкой синтез мышечных белков существенно выше значений при аналогичной по относительной нагрузке концентрической тренировке (55). Когда эксцентрическая тренировка применяется несколько недель, адаптационная гипертрофия мышц превышает значения при концентрической тренировке (62). Поэтому сверхмаксимальная эксцентрическая тренировка, вероятно, вызовет большую адаптационную гипертрофию, при условии обеспечения необходимого восстановления. Тем не менее, научные данные на этот счёт противоречивы, так как в нескольких исследованиях на обнаружили разницу между типами сокращений (28). По-видимому, это связано с трудностями сопоставления условий, поскольку в эксцентрической тренировке требуются более высокие нагрузки.
В недавнем мета-анализе Schoenfeld et al (76) обнаружили несущественную тенденцию к большей адаптационной гипертрофии от эксцентрической тренировки по сравнению с концентрической тренировкой (P = 0,076). Средний размер эффекта для роста мышц после эксцентрической и концентрической тренировки составил 1,02 и 077, соответственно, с различиями в размере эффекта 0,27. Авторы предположили существенное влияние на результаты большей работы, так как во многих исследованиях приводили в соответствие количество повторений, а не общую выполненную работу.
Ещё один фактор для рассмотрения в эксцентрической тренировке – обнаружение гипертрофии специфичных регионов. Несмотря на аналогичную гипертрофию наружной широкой мышцы бедра от концентрической и эксцентрической тренировки, Franchi et al (27) показали, что гипертрофия средней части мышцы была значительнее в концентрической группе, тогда как в эксцентрической группе наблюдался больший прирост в дистальном отделе. Вероятно, это обусловлено изменениями в архитектуре мышц, вторичными по отношению к активации изменений молекулярных реакций, после только концентрических или только эксцентрических вмешательств (27). Эксцентрическая тренировка приводит к увеличению длины сократительной части мышцы, тогда как концентрическая тренировка способствует увеличению угла перистости, что указывает на большее количество параллельно расположенных саркомеров (27). Это влияет на зависимость сила-скорость в отдельной мышце при увеличении длины сократительной части (последовательно соединённых саркомеров) повышается скорость сокращения (19). В отличие от этого, в мышце с большим углом перистости возрастает способность производить высокое усилие из-за большего количества параллельно расположенных саркомеров (19).
От чего зависит сила мышц? (физиологические факторы)
Итак, мы разобрались с анатомическими факторами, определяющими силу мышц. Можно сказать, что это тот морфологический потенциал, который зависит от генетики человека (например, число мышечных волокон), его пола, возраста и функционального состояния, которое определяется его образом жизни (малоподвижный или систематичные тренировки).
Однако вы хорошо понимаете, что каждый человек может сам, произвольно регулировать силу, которую проявляют его мышцы. Это означает, что наша центральная нервная система обладает такими механизмами. Назовем их физиологическими механизмами регуляции силы и скорости сокращения мышц.
Сокращение скелетных мышц человека
Давайте теперь разберемся в механизме сокращения мышцы, точнее в механизме сокращения мышечных волокон, а еще более точно в механизме сокращения миофибрилл или другими словами, в механизме сокращения саркомера. Этот процесс можно условно разделить на несколько этапов.
Чтобы сократиться, мышца должна получить сигнал из центральной нервной системы (ЦНС). Такими сигналами являются импульсы, поступающие по мотонейрону к мышце.
Более подробно строение и функции мышц описаны в моих книгах:
- Гипертрофия скелетных мышц человека
- Биомеханика опорно-двигательного аппарата человека
мышцемотонейронамышечным волокнаммышечное волокно
После того, как по аксону мотонейрона к мышечным волокнам приходит импульс, из него в области соединения выделяется ацетилхолин. Выделение этого нейромедиатора (ацетилхолина) приводит к протеканию ряда процессов, в результате которых меняется полярность сарколеммы мышечного волокна. Это называется деполяризацией сарколеммы мышечного волокна. В результате развивается потенциал действия.
Потенциал действия через отверстия в сарколемме «проникает» внутрь мышечного волокна и через Т-трубочки достигает саркоплазматического ретикулума (то есть происходит деполяризация не только мембраны мышечного волокна, но и мембран Т-трубочек и саркоплазматического ретикулума). Это в конечном счете приводит к выделению из саркоплазматического ретикулума ионов кальция в саркоплазму мышечного волокна (рис. 1).
Рис.1. Механизм сокращения скелетных мышц
Затем ионы кальция соединяются с тропонином (тропонин – один из белков тонкого филамента). Этот белок имеет шарообразную форму и расположен в тонком филаменте регулярно через определенные расстояния. После соединения с ионами кальция, тропонин меняет свою конфигурацию и приподнимает длинные тропомиозиновые трубки. Когда мышца неактивна, длинные трубки белка тропомиозина закрывают активные центры на актине. После того как тропомиозиновые трубки приподнимаются, на актине открываются активные центры. К ним теперь могут прикрепляться миозиновые головки.
Когда миозиновая головка толстого филамента прикрепляется к тонкому филаменту, между толстым и тонким филаментами начинается взаимодействия (говорят: «Образуется поперечный мостик» (рис. 2). При взаимодействии с актином каждая миозиновая молекула ежесекундно расщепляет с выделением энергии до 10 молекул АТФ. За счет энергии, высвобождающейся при расщеплении АТФ, миозиновая головка поворачивается и тянет тонкий филамент в направлении центра саркомера. Это приводит к скольжению толстого и тонкого филаментов относительно друг друга. В конце гребка (поворота) к миозиновой головке присоединяется новая молекула АТФ, что приводит к отделению головки от актина и присоединению её к новому активному участку тонкого филамента. Многократное повторение этого процесса приводит к тому, что расстояние между Z-дисками уменьшается. Следовательно, происходит уменьшение длины саркомера. Одновременное сокращение всех саркомеров, расположенных последовательно вдоль миофибриллы приводит к уменьшению её длины, длины мышечного волокна и всей мышцы в целом. Мышца работает в преодолевающем режиме.
Прекращение импульсов, поступающих от мотонейрона к мышечному волокну приводит к расслаблению мышцы.
Рис.2. Схема, иллюстрирующая взаимодействие толстого и тонкого филаментов (Л. Страйер, 1985)
Литература
- Волков Н.И. Биохимия мышечной деятельности / Н.и.Волков, Э.Н. Несен, А.А. Осипенко, С.Н.Корзун. — Киев: Олимпийская литература, 2000.- 503 с.
- Калинский, М.И. Биохимия мышечной деятельности / М.И. Калинский, В.А. Рогозкин. – Киев: Здоровья, 1989.– 144 с.
- Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
- Самсонова, А.В. Гипертрофия скелетных мышц человека: Учеб. пособие. 5-е изд. /А.В. Самсонова. – СПб: Кинетика, 2018.– 159 с.
- Самсонова, А. В. Гормоны и гипертрофия скелетных мышц человека: Учеб. пособие. – СПб: Кинетика, 2019.– 204 c.: ил.
- Степанова, М. Анаэробика /М. Степанова, В. Степанов // Легкая атлетика, 2011 № 7-8. С. 24-27.
Кратковременная гипертрофия мышц
Чаще всего гипертрофию скелетных мышц человека рассматривают как их долговременную адаптацию к физическим нагрузкам различной направленности.
Но бывает и кратковременная гипертрофия скелетных мышц – то есть изменение объема мышцы в результате одной силовой тренировки. Спортсмены, выступающие в соревнованиях по бодибилдингу или бодифитнесу хорошо знают, что объем мышц можно немного увеличить, если использовать специальный метод тренировки – пампинг.
Пампингом (от англ. pump – помпа, насос) называется методика силовой тренировки, при которой выполняется большое количество повторений (15 и более) с небольшим отягощением. Паузы отдыха между повторениями очень короткие. После пампинга субъективные ощущения спортсмена можно описать как «распирание» мышц, «жжение» в мышцах или что мышцы стали «тяжелее».
Считается, что основная причина кратковременной гипертрофии мышц заключается в наполнении кровью капилляров, окружающих мышечные волокна. Из-за коротких пауз отдыха отток крови затруднен.
Мне кажется, что дело не столько в оттоке крови, но и в других эффектах.
Одним из них является рабочая гиперемия и который я уже упоминала в предыдущих статьях. Дело в том, что в покое часть капилляров, окружающих мышечные волокна не функционирует. Однако при выполнении физических упражнений количество функционирующих капилляров увеличивается. Это явление называется рабочей гиперемией. Естественно, что увеличение количества функционирующих капилляров приводит к кратковременному увеличению объема мышцы, то есть ее гипертрофии.
Более подробно кратковременная гипертрофия мышц рассмотрена в моей книге «Гипертрофия скелетных мышц человека«
Короткие паузы отдыха приводят к недостаточному поступлению кислорода в мышечные волокна, то есть к их гипоксии. Гипоксия способствует накоплению в мышечных волокнах молочной кислоты, которая очень быстро превращается в лактат (соль молочной кислоты). Это способствует увеличению проницаемости мембран мышечных волокон. Вследствие этого в мышечные волокна через каналы, которые называются аквапорин 4 поступает вода. Возникающий «отек» мышечных волокон приводит к увеличению их объема (кратковременной гипертрофии мышечных волокон), что вызывает еще большее сдавливание кровеносных капилляров и проявлению гипоксии. Более того, увеличение кислотности саркоплазмы за счет увеличения в ней ионов водорода активирует работу специального механизма, который выкачивает в тканевую жидкость ионы водорода и закачивает ионы натрия. А увеличение кислотности тканевой жидкости воздействует на рецепторы мышц, реагирующие на изменение кислотности. Поэтому спортсмены испытывают жжение в мышцах.
После прекращения выполнения силовых упражнений, кровоток восстанавливается. Раскрывшиеся во время работы капилляры снова «слипаются». Поэтому эффект от применения пампинга длится недолго: от 5 до 10 минут. Этого времени, однако, вполне достаточно, чтобы спортсмены на помосте выглядели более эффектно (рис.1).
Победительница чемпионата Санкт-Петербурга 2018 Анастасия Айкина (категория Бодифитнес +168см) — магистрантка НГУ им. П.Ф.Лесгафта.
Более подробно этот вопрос освещен в видеоролике «Почему болят мышцы на тренировке? Нужно ли делать кардио после тренировки?» на моем канале на YouTube.
Лечение
Большинство судорог могут быть прерваны с помощью растяжения мышцы. Для многих судорог ног и стоп это растяжение часто может быть достигнуто путем вставания и ходьбы. При судорогах икроножных мышц возможно сгибание лодыжки с помощью руки, лежа в постели с вытянутой прямо ногой. При писчем спазме нажатие рукой на стенку с пальцами вниз позволит растянуть сгибатели пальцев.
Также можно провести аккуратный массаж мышцы, что позволяет расслабить спазмированную мышцу. Если судорога связана с потерей жидкости, как это часто бывает при активной физической нагрузке, необходима регидратация и восстановление уровня электролитов.
Мышечные релаксанты могут быть использованы в краткосрочной перспективе в определенных ситуациях, для того чтобы позволить мышцам расслабиться при травмах или других состояниях (например радикулопатии). К этим препаратам относятся Циклобензаприн (Flexeril), Орфенадрин (NORFLEX) и баклофен (Lioresal).
В последние годы стали успешно использоваться инъекции терапевтических доз токсина ботулизма (Ботокс) при некоторых дистонических мышечных расстройствах, которые локализованы в ограниченной группе мышц. Хороший ответ может длиться несколько месяцев и более, и инъекции могут быть повторены.
Лечение судорог, которые связаны с конкретными заболеваниями, как правило, фокусируется на лечении основного заболевания.
В тех случаях, когда судороги серьезные, частые, продолжительные, плохо поддаются лечению или не связаны с очевидной причиной, то в таких случаях требуется как дополнительное обследование, так и более интенсивное лечение.
Разработка программы тренировок для набора мышечной массы
Стандартный протокол для гипертрофии мышц предполагает выполнение 8 – 12 повторений с достаточной интенсивностью, чтобы вызывать отказ к последнему повторению. Короткий или средний по продолжительности отдых между подходами (30 – 120 с) позволяет создать значительный метаболический запрос. Выполнение 3 – 4 подходов в упражнении обеспечивает эффективное механическое напряжение вовлечённых в сокращение мышц. Темп движения должен предусматривать относительно короткую фазу концентрического сокращения (1 – 2 с) и более продолжительную (2 – 6 с) эксцентрическую фазу для обеспечения достаточного механического напряжения. «С точки зрения гипертрофии, эксцентрическое сокращение оказывает большее влияние на развитие мышц. В частности, эксцентрические упражнения связывают с более значительным увеличением синтеза белка» (Schoenfeld, 2010).
Комплексные, многосуставные движения со свободными весами, например, со штангой, гантелями и гирями, включают большое количество разных мышц и могут оказывать значительное метаболическое воздействие при занятиях, особенно в диапазоне повторений от 12 до 20. Регулируемые тренажёры, предусматривающие изолированные или односуставные движения, способны направить воздействие точно на отдельную мышцу. Шенфельд утверждает, что каждый вид отягощения играет свою роль в оптимальном росте мышц: «Свободные веса, вовлекающие большое количество мышц, помогают увеличить плотность мышц, тогда как стабилизация, предоставляемая тренажёрами, позволяет больше нагрузить отдельные мышцы». Программа упражнений, представленная ниже, основана на последних научных исследованиях, связанных с увеличением массы мышц. Метаболические и механические требования при тренировке высокого объёма могут вызывать серьёзные повреждения мышц и рекомендуются только для клиентов с опытом занятий со свободными отягощениями, по крайней мере, один год. Клиентам необходимо начинать с хорошей динамической разминки, включающей различные движения без отягощений и для мышц core, чтобы подготовить мышечную ткань к стрессовому воздействию тренировки высокого объёма. Даже если в занятии предусмотрена нагрузка на одну или две части тела, необходимо выполнять разминку для всего тела, которая может помочь в увеличении расхода калорий и способствует восстановлению мышц, нагруженных в предыдущих занятиях. Начинать тренировку предпочтительно с комплексных движений со свободными весами для включения максимального количества мышц, и в ходе занятия постепенно переходить к использованию тренажёров, оказывающих воздействие на отдельные мышцы.
Последнее упражнение в каждой тренировке необходимо выполнять в тренажёре, применяя подход со снижением веса: после выполнения всех повторений подхода до отказа, вес снижается и с ним также выполняется возможное количество повторений до отказа. Подходы со снижением веса способны оказывать существенный механический и метаболический стресс, а также вызывают значительный дискомфорт, поэтому их следует выполнять в конце занятия.
Каждому клиенту необходима программа, отвечающая его/её нуждам, но аналогичный способ наибольшего увеличения массы мышц. Вы отметите, что в этой программе ограничена кардио-нагрузка. Согласно Шенфельду, «слишком большой расход энергии может уменьшить рост мышц».
Механические стимулы
Чтобы разработать программу упражнений для максимального роста мышц, нужно понимать физиологию мышечных волокон. Двигательный нейрон принимает сигнал от центральной нервной системы (ЦНС), в результате чего мышечные волокна, соединённые с ним, сокращаются. Выделяют два основных типа мышечных волокон: тип I (медленносокращающиеся) и тип II (быстросокращающиеся). Волокна типа I относят также к аэробным, вследствие их высоких окислительных способностей, которые дают им возможность сокращаться продолжительное время. Волокна типа II наиболее часто в литературе по физиологии разделяют на два типа IIa и IIb. Волокна типа IIb используют для сокращений богатые энергией фосфаты, чтобы кратковременно генерировать большое усилие, без использования кислорода, что делает их полностью анаэробными. Волокна типа IIa могут получить свойства волокон типа I и типа IIb, в зависимости от применяемого тренировочного стимула (Baechle and Earle, 2008; Zatsiorsky and Kraemer, 2006).
Начальные увеличения в силе от программы тренировок с отягощениями происходит преимущественно за счёт улучшения функции нервов: внешнее сопротивление создаёт стимул, который увеличивает количество активируемых двигательных единиц и их скорость сокращения. Одним из долгосрочных видов адаптации к тренировке с отягощениями является увеличение поперечника мышечных волокон. Когда поперечник увеличивается в размере, большая поверхность волокон позволяет генерировать большее усилие. Мышцы, в которых поперечник отдельных волокон больше, способны проявлять большую силу. Несмотря на общепринятое заблуждение, что поднимание отягощений может приводить к быстрому увеличению размеров мышц, необходимо восемь и более недель, даже при отлично составленной программе, для того, чтобы произошёл существенный рост.
Согласно принципу «всё или ничего», двигательные единицы могут быть активными или неактивными: тем не менее, когда стимул для сокращения достаточный, сокращаются все волокна. Медленносокращающиеся двигательные единицы имеют низкий порог возбуждения и низкую скорость проведения, они лучше всего подходят для продолжительной активности, требующей минимальных усилий, так как содержат волокна типа I.
Быстросокращающиеся двигательные единицы содержат мышечные волокна типа II и имеют высокий порог возбуждения, а также высокую скорость проведения сигналов и лучше подходят для быстрого производства усилия, так как могут производить АТФ быстро, без участия кислорода. Быстросокращающиеся волокна также превосходят в диаметре волокна типа I и играют более существенную роль в гипертрофии. Рекрутирование и иннервация мышечных волокон типа II требует создания высокой механической и метаболической нагрузки до отказа вовлечённых в подход мышц (Zatsiorsky and Kraemer, 2006).